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Effects of Energetic Additives on Combustion Dynamics 
S. Son and W. Anderson 

Purdue University 

Introduction 

Energetic additives offer the possibility of increased performance of rocket engines. For 
hydrocarbon-fueled rocket engines, however, increased performance tends to be associated with 
increased severity of combustion instability. A number of questions exist before energetic 
additives can be used successfully in rocket engines, for example: 

• Why do combustion stability and performance tend to oppose each other in hydrocarbon- 
fueled rocket engines? In H2-fueled engines performance and stability increase together. 

• Can an increased rate of energy release be used to stabilize combustion, and increase 
performance for hydrocarbon-fueled engines? 

• How can the coupled physical and chemical processes of injection and combustion be 
used to enhance stability? 

• If the 'steady' combustion rate is sufficiently high, can effects of flow perturbations be 
reduced? 

• Can particles be used to provide acoustic damping? 

The work described here is an initial, exploratory investigation into the role of fuel and flame 
chemistry on combustion instabilities in liquid rocket engines. The goal of the work is to 
determine whether changes in the energy content of the fuel can improve combustion stability. A 
limited series of experiments, analyses, and computations were conducted. In summary, it was 
determined that the effects of nano-Al additives on combustion instability JP-8 and ethanol drops 
loaded with nano-Al additives burned differently, and had different stability results in model 
rocket combustor. An exploratory computational study using Large Eddy Simulation indicated 
that faster-burning fuels actually increased stability. Experiments in the CVRC indicated that 
there are coupled effects including injector flow dynamics and chemistry. 

Results 

The preliminary study proceeded along two primary fronts. First, a Continuously Variable 
Resonance Chamber (CVRC) was used as a tool to explore effects of fuel type and energetic 
additives on the limit cycle amplitudes of longitudinal instabilities. Second, an investigation of 
the effects of adding nano-aluminum (n-Al) on processing and static fluid mechanics, and drop 
burning studies, was done. A very limited investigation into the effects of chemical kinetics on 



combustion instability was also performed. The results from these studies are described in more 
detail below. 

Tests in a Continuously Variable Resonance Combustor. The CVRC shown in Fig. 1 has been 
used to measure the limit cycle combustion instabilities with methane fuels.1 Tests at fixed 
geometry conditions have also been used to determine the limit cycle amplitudes with JP-8 
fuels.2 Thus this device provides an excellent vehicle with which to examine the effects of 
additives on combustion instability. 
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Fig. 1. Continuously Variable Resonance Chamber. Location of choked oxidizer inlet is 
translated by electro-mechanically actuated shaft. Oxidizer tube length varies from 7.5- to 3.5-in, 
representing traverse from half-wave resonator to quarter-wave resonator. Chamber length is 15- 
in. 

To test the JP-8 and ethanol fuels loaded with n-Al, the CVRC was operated in a fixed geometry 
condition. In tests that evaluated the effects of hydrogen content in methane fuel, the CVRC was 
operated with a traversing oxidizer inlet. In these latter tests, the oxidizer post length was started 
at 7.5-in, and moved to 3.75-in, representing a half-wave and quarter-wave resonator, 
respectively, for the 15-in long combustor. In both types of tests, high frequency pressure content 
was measured at the locations indicated in Fig. 1. Figure 2 shows a typical system pressure-time 
trace during the test. 
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Fig. 2. Time trace of system-level pressures during a typical test. 

The high-frequency pressure data were analyzed for spectral content. Figure 3 shows the power 
spectral density of a test using JP-8 fuel loaded with n-Al. It can be seen that the n-Al has 
essentially no effect at this particular condition. 
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Fig. 3. Power spectral density of instability using JP-8 fuel loaded with 1% by weight of n-Al. 
Post length is fixed at 7.5-in. Essentially no difference can be measured. 

In contrast, it was observed that 1% by weight of n-Al in ethanol did have an effect. Figure 4 
shows the power spectral density of a longitudinal instability in this case. It is seen that the 
presence of n-Al leads to slightly high noise levels, and increases the frequency of the instability 



slightly. An analysis of this effect was not done, but we assume it is due to a difference in sound 
speed. 
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Fig. 4. Power spectral density of instability using ethanol fuel loaded with 1% by weight of n-Al. 
Post length is fixed at 7.5-in. Presence of n-Al increases noise level slightly and tends to increase 
the frequency of the instability. 

Results with the n-Al additives were fairly unremarkable. To investigate the effects of energetic 
additives more systematically, CVRC tests turned to measuring the effects of hydrogen addition 
on combustion instability. It is known from other experiences (e.g., Ref 3) that the addition of 
hydrogen tends to dampen combustion dynamics in gas turbine combustors. It is also widely 
known that hydrogen-fueled rocket engines are generally more stable than hydrocarbon-fueled 
engines. If the effects of hydrogen addition on combustion stability in rocket engines could be 
determined, then energetic additives could presumably be designed that would provide both an 
increase in performance and increased stability margin. 

To evaluate the effects of hydrogen, weight percentages of 0, 5, 10, and 15% hydrogen were 
added to methane. The CVRC was operated in the translating mode. Table 1 summarizes the test 
conditions. 



Table 1. Test Condition Summary for Hydrogen Addition into Methane Fuel 

Hi Concentration 0%wt     5%wt      I0%wl      15%wt 

202        202 195 200 Pc [psia] 

Ox. Mass Flowrate [lbm/s]     0.72       0.71        0.700       0.697 

CH4 Mass Flowrate [lbm/s]    0.105     0.092      0.084       0.076 

H2 Mass Flowrate [lbm/s]      0.000     0.0046    0.0084     0.0116 

Equivalence Ratio 1.169      1.156       1.166        1.163 

Representative power spectral density plots for the high-frequency pressure measured 0.5-in 
downstream of the injector face are shown in Fig. 5. The circled areas corresponding to the 
maximum amplitude of the first longitudinal mode were used to comparison the relative stability 
between the various hydrogen percentage cases, as shown in Fig. 6. 
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Fig. 5. Representative power spectral density plots for tests indicated in Table 1. Measurements 
are made at 0.5-in downstream of the injector face. Injector post length is 7.5-in. Circled areas 
correspond to maximum amplitude of first longitudinal mode. 
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Fig. 6. Relative comparison between hydrogen percentage cases on amplitude of first 
longitudinal instability. Oxidizer post length is 7.5-in. Measurements are shown for four different 
locations with respect to the injector face. 

Similar analysis was done for oxidizer post lengths of 4.5-, 5.5-, and 6.5-in. A summary of all 
these cases is shown in Fig. 7. 
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Fig.   7.   Summary  plot   showing  effect  of hydrogen   concentration  on   amplitude  of first 
longitudinal mode instability for varying oxidizer post length. 

Computational Study. Results from a brief computational study of the effects of reaction rate on 
combustion instability are shown in Figs. 8 and 9. Figure 8 shows the computed pressure-time 
trace for a case during the limit cycle using realistic reaction rates (shown in blue) and the case 
where the reaction rate was arbitrarily increased by a factor of 104. Fig. 9 shows the computed 
reacting flowfield for these two comparison cases. 
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Fig. 8. Pressure-time trace for realistic kinetics (blue trace) and fast kinetics (red trace). 
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Fig. 9. Effects of reaction rate. The configuration shown in Fig. 1 was used, and reaction rate was 
changed arbitrarily by pre-multiplying the pre-exponential coefficient by 104. 

Mixing Results 

There were two methods used to try to suspend the nano-particles in fuels.   These 
included using an ultrasonic horn and a resonant mixer. The ultrasonic horn mixed the particles 
by introducing localized sonic waves to provide for vigorous mixing around the tip of the horn. 
Fuels were mixed for 30 seconds at 50% power at several second durations and then checked to 
see if particles were dispersed. If they were not, this process was repeated until particles were 
fully dispersed. This method provided for some heating of the fuel while mixing causing some 
evaporation of the fuel. The other method used a Resodyn LabRam mixer that finds the resonant 
frequency of the system and then apply a vertical cyclic force at that frequency causing vigorous 
movement of the particles in the suspension finally dispersing them. These mixtures were 



typically mixed for 30 seconds at various intensities and then checked for complete dispersion 
and repeated until desired results were achieved. This method did not add very much heating 
during the mixing process. Through visual observations, there did not seem to be much of a 
difference between the two mixing types on the final outcome of the mixed fuel. 

Four fuels were used to suspend the nano-particles. These included isopropyl alcohol, 
ethanol, hexane and JP-8. Two surfactants were used making up 3% by weight of the total 
mixture: Neodol and Tergitol. Various types of nanoscale aluminum were used as well that 
consisted of different sizes of aluminum with different coatings including palmitic acid and a 
paraffin. The nano aluminum was always 1% by weight of the total mixture. The time that these 
solutions remained suspended almost never exceeded 30 minutes. Most suspensions started to 
precipitate nano-particles in less than 15 minutes after mixing. A summary of these results can 
be found in Table 2. The results reported in this table were all from fuels that were mixed using 
the sonic horn. An example of the observations made of settling is shown in Fig. 10. 

Table 2. Time for different fuel mixtures to precipitate nano Aluminum. 



Initial 11 min. 37 min. 1 hr. 18min. 4 hr. 11 min. 

Fig. 10. Still pictures of 1% by weight 80 or 50 nm Aluminum with 3% by weight in JP-8 after 
mixing with and ultrasonic horn. 

Droplet Combustion 

Qualitative observations were made of several types of nano-fuels burning. These fuel 
mixtures included JP-8 with 3% by weight Neodol and 1% by weight of 80 nm Novacentrix nano 
Aluminum while the other fuel consisted of 190 proof ethanol and 1% by weight 80 nm 
Novacentrix nano Aluminum. Both of these fuels were mixed using the Resodyn mixer as 
described above. These droplets were burned on steel syringes that allows some heat transfer 
that probably affected burning rate of the droplet. For this purpose, only qualitative observations 
are noted. Future work will use small fibers to suspend the droplets. 

The JP-8 mixture behaved qualitatively very differently than the ethanol mixture. The 
aluminum did not appear to react significantly during the combustion of the actual liquid fuel. 
This was concluded due to the lack of bright flashes that are typically observed in the 
combustion of aluminum. Most of the aluminum reacted in the final moments of the droplet life 
causing a large "explosion" of aluminum combustion that can be seen in Fig. 11. The ethanol 
mixture on the other hand exhibited aluminum reacting throughout most of the lifetime of the 
droplet with an increase towards the end of the droplets life. This difference in combustion 
process at atmospheric conditions would indicate that the combustion process within the rocket 
combustor may not be the same either for different fuels. 

There are several reasons why these fuel mixtures could burn differently. The JP-8 
mixture required a surfactant that suspends the aluminum in the JP-8. The ethanol mixture did 
not have a surfactant but suspended the nano-particles by itself because it is polar. The volatility 
of the fuels is expected to be different (ethanol would have a higher volatility than JP-8). This 
could allow the aluminum to be entrained into the gas easier and react throughout more of the 
life of the droplet. More work is needed to determine if this or other causes explain these 
observations. 



Fig. 11. Combustion process of 3% by weight Neodol, 1% by weight 80 nm aluminum and JP-8. 

Fig. 12. Combustion process of 1% by weight 80 nm aluminum and 190 proof ethanol. 



Conclusions 

In summary, the addition of 1% n-Al had little effect on JP-8 stability, whereas the addition of 
1% n-Al seemed to be slightly destabilizing with ethanol. The addition of H2 to methane 
indicated combined fluid mechanic and chemistry effects, requiring a more systematic study 
involving experiment, analysis, and computation to determine how an energetic material should 
be added to achieve simultaneous improvements in stability and performance. Suspension 
properties of nano aluminum in two fuels have been examined and qualitative combustion 
observations have been observed. 

From the results obtained here, it is clear that further studies are needed to fully understand 
effects of nanofuels and hydrogen addition on performance and combustion instabilities. With 
regards to hydrogen addition, we need to seek answers to the following questions: 

• Can increased burning rates of hydrocarbon fuels be used to stabilize combustion? 

• What is the detailed mechanism of combustion instability in ORSC combustors? Can it 
be captured in a reduced order combustion response model? 

• Why is the effect of hydrogen addition on stability geometry-dependent (e.g., fluid 
dynamics and acoustic flow field) 

• Can a practical hydrogen carrier be developed for use as an additive to hydrocarbon 
fuels? 

With regards to additives such as n-Al, the following questions remain: 

• One additive configuration resulted in decreased stability - what about other mass 
concentrations and particle sizes? What causes the increased instability? 

• Could alumina produce a catalytic effect? What about other types of nano particles? 

• Significant effects on ignition for both JP8 and ethanol have been noted- is ignition 
behavior related to effects on combustion stability? 

• Do nano particles influence atomization and vaporization? 

• Do nano particles provide acoustic damping? To what degree? 


